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Abstract 

The precise details of elastic deformation are more complex than is evident from the common theory 
of elasticity. Experiments show that elastic simple shear requires more work than pure shear, 
indicating that strain is not a thermodynamic state function. The natural alternative is displacement. A 
new approach to elasticity and deformation, a generalized thermodynamic theory for bonded 
materials, correctly predicts the simple/pure shear energetic difference. Experiments in the plastic 
realm show that simple shear costs substantially less work than pure shear, which is also predicted by 
the new approach.  

Introduction 

A recent review of conventional continuum mechanics revealed major conceptual idiosyncrasies in this 
theory. The First Law of thermodynamics is the energy conservation law of non-conservative physics, 
of exchange of energy between system and surrounding. In continuum mechanics it is given in a form 
which subordinates it to the conservative energy conservation law of Newtonian mechanics 
(Koenemann 2008a). This turns the First Law upside-down, it negates its very nature.  

A conservative process observes Ekin + Epot = U = const. It is thus a process that takes place within a 
system which exchanges neither mass nor energy with a surrounding. A non-conservative process is a 
process beyond and outside this law such that U is a variable. The properties of the system are 
considered per unit mass, and any energetic changes then come about through exchange of energy 
between system and surrounding. The energy conservation law for such a non-conservative process 
is thus dU = dw + dq. It may then be reversible dq/T = 0 or irreversible dq/T > 0. Elasticity is therefore 
by nature a reversible change of state in the sense of the First Law of thermodynamics: external work 
is done upon the system, and a potential builds up in the system which causes its reconstitution upon 
release. But the understanding of the loaded state in conventional continuum mechanics, commonly 
called stress σ, is based on Newtonian mechanics to this day (Koenemann 2001, 2008a). It is 
therefore conservative, and pre-thermodynamic; it cannot describe an energetic change of state of a 
system. For any process by which work is done upon a system V, the divergence of the acting forces 
must be non-zero,  

 ∇⋅⋅⋅⋅f = ϕ ≠ 0;  (1) 

this is the Poisson condition (ϕ = charge; Kellogg 1929). However, the Cauchy theory of stress σ leads 
to the commonly known condition that for a volume-neutral elastic deformation the trace tr σ = 0. This 
is a form of the Laplace condition  

 ∇⋅⋅⋅⋅f = 0, (2) 

which is one way of stating that no net work is done upon the system. Any theory of deformation that 
implicitly refers to eqn.2 instead of eqn.1 must therefore be invalid by definition. Kellogg (1929) 
discusses the Laplace condition in a chapter on "potentials at points of freespace", and the Poisson 
condition in a chapter on "potentials at points occupied by masses", such as the interior of a solid. The 
Laplace condition is equivalent to Ekin + Epot = U = const since U is invariant, a change of state is 
therefore ruled out. If the energy of a system is changed, U is necessarily a variable, and ϕ ≠ 0 in the 
loaded state; any changes are then considered under dU = dw + dq.  

There are certainly numerous texts which make attempt to combine the Cauchy stress theory with 
thermodynamic theory. However, this does neither correct the pre-thermodynamic mathematical 
structure of the former, nor its inevitable consequence, the zero work condition for an isochoric 
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deformation (Koenemann 2008a). If a body is internally bonded, its internal pressure (dU/dV)T ≠ 0. 
This term has no place in Newtonian mechanics. In solids the internal pressure is in the order of 
several 100 MPa. The term stress is therefore avoided here in favour of the loaded state. An approach 
to elasticity which treats elastic deformation as a change of state, which builds up upon an equation of 
state and the First Law, and which arrives at a non-zero work result for a volume-constant elastic 
deformation, has been given by Koenemann (2008b).  

In this paper theoretical predictions and experimental evidence shall be compared for both elastic and 
plastic deformation. Experiments have shown that elastic simple shear deformation requires more 
energy than elastic pure shear deformation per chosen strain ε, whereas plastic simple shear requires 
substantially less work than plastic pure shear, again per unit strain ε. There is thus an energetic 
inversion across the reversible-irreversible boundary. Its significance for the generation of geological 
structures has not been appreciated so far; and this author is not aware of an attempt to explain these 
energetic differences in a coherent way that applies to both sides of the elastic-plastic transition. 

Elastic deformation work 

Theoretical considerations 

The work equation in physics is always the product of an intensive and an extensive term, the latter is 
the distance between a starting and an end point, or a path. Strain ε has so far been taken as a 
measure of deformation, so it seemed natural to consider it as a state function, in analogy to the 
thermodynamic PdV. However, the latter expression is isotropic. For anisotropic changes of state it 
needs to be generalized.  

A state function is a physical parameter of a system of mass which only depends on its state in 
equilibrium. It is path-independent, or history-independent, and a function of the initial and final state 
only (Moore 1972, Atkins 1990), such as temperature, pressure, volume, internal energy, entropy. 
Mathematically, they are all scalars. The intensive terms are isotropic by definition. The spatial 
properties of the extensive terms have not been a matter of discussion as far as this author is 
informed. They certainly can be subject to boundary conditions; however, since thermodynamics was 
developed for equilibrium processes in a gas at rest, the boundary conditions are assumed to be 
isotropic by default, and correctly so: the surface-volume relation for a given mass is shape-
dependent, but has an minimum value for a sphere; and it is impossible to find an average value for 
an intensity term (e.g. mole fraction) as a function of location in a heterogeneous environment if the 
shape of the thermodynamic system is unconstrained. In addition, gases do not have directional 
properties. The shape of the thermodynamic system is thus safely assumed to be of spherical shape 
unless better information is available. In solids this may well be the case, because they can be 
anisotropic.  

The First Law is sometimes given in the ostensibly thermodynamics-compatible form  

 TdSPdVddU +−−= εσ  (3) 

where the first term RHS contains the anisotropic part and the second term the isotropic part of the 
work term. Here, strain ε is used as a state function. However, in 30 years of literature research this 
author has not found a derivation or justification, not even the attempt at discussion. It needs to be 
emphasized that for a volume-neutral deformation both σii and εii are zero; σdε therefore satisfies the 
Laplace condition (eqn.2), it is energetically empty (Koenemann 2008a). The question is if the use of 
strain as a state function is indeed correct. The natural alternative would be displacement.  

Historically, the concept of strain is much older than thermodynamics. Cauchy (1827a) defined it in 
analogy to his stress theory (Cauchy 1827b). But only his strain theory can be related to Euclidean 
space, not his stress theory (Koenemann 2001). In effect, Cauchy’s two theories cannot be related to 
one another. This may be surprising at first, but shows the great age of Cauchy’s work which was 
done 30-40 years before the properties of vector spaces and the systematic foundation of linear 
algebra was worked out, without which it is not possible to generate a mathematically coherent spatial 
theory. It was also 40 years before the physics of the interaction of system and surrounding, i.e. the 
basics of thermodynamics, were sufficiently understood to serve as a model. It is not possible to 
deduce a proper cause-effect relation from Cauchy’s theory; the latter is not satisfying for a modern 
reader because he set the torque to zero by default. But the torque integrated over all directions in 
space cannot be assumed to be zero without (a) a careful evaluation of the configuration of the acting 
forces as a function of the external boundary conditions, (b) the shape of the volume element upon 
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which they act, and (c) the condition that system and surrounding are solidly bonded to one another. 
However, bonds were never considered in continuum mechanics, from Cauchy (1827b) to the 20th 
century standard text books (Truesdell & Toupin 1960, Gurtin 1981, Holzapfel 2000). Cauchy's interest 
in deformation was driven by mathematics. He was evidently fascinated by the representation of a 
quadric by an elliptical or hyperbolic plane, he mentioned it in his earliest note on this subject in 1821 
already. It appears that he knew about this concept early on and turned to deformation to find an 
application for it – intuitively, and carried by his intellectual excitement. But there he jumped to 
conclusions. Cauchy’s assertion – that rotational equilibrium exists, without argument – resulted in an 
unrecognized boundary condition, applying to uniaxial compression or plane pure shear only. His 
approach lacks generality. Simple shear deformation is the critical deformation type to test his theory. 
For more discussion see Koenemann (2008a).  

For a modern understanding of deformation the thermodynamic theory offers excellent guidance. It 
starts with an equation of state; thereby the material properties are introduced. It distinguishes system 
and surrounding, which is not done in continuum mechanics. The system contains a finite mass – in 
mol, not in [kg] – which is the reference mass for the thermodynamic potentials. The external loading – 
a pressure increase in standard thermodynamics – gives the constraints, upon which the effect of the 
loading is calculated by means of the work equation PdV, so that the effect ∆V is a function of the 
material properties and the external boundary conditions exclusively. Thermodynamics thus has a 
clear order: material properties plus cause deliver the effect; the latter does not require a theory of its 
own. This conceptual framework was obeyed in the development of the theory outlined below 
(Koenemann 2008b).  

Strain and displacement differ in their geometric and mathematical properties. Strain is an orthogonal 
tensor, and insensitive to constraints with lower than orthogonal symmetry. The strain ellipsoid rotates 
in a progressive simple shear, but it records only the relative stretch without reference to a coordinate 
system, and thus without relation to the boundary conditions. Instead, displacement is a vector field 
which may or may not be orthogonal, and which contains much more information than strain. 
Displacement thus appears to be the term to which a proper physical cause-effect relation should lead. 
The strain may then be derived from it, but not the other way round.  

The study of deformation is strongly oriented towards strain because it appears natural to correlate 
two tensor quantities. However, since the current theory of stress cannot be correct – it is incompatible 
with potential theory (Koenemann 2008a) – that obstacle is removed. Workers studying simple shear 
have been trained to accept that the principal axes of finite strain rotate with progressive deformation. 
Principal axes are found through an eigenvector routine. But eigendirections cannot rotate in 
engineering mathematics, they are those directions in which only radial components exist. Rotating 
eigendirections are a clear sign that deformation as a theoretical problem is not properly understood; 
and the fact that the principal axes of both instantaneous and finite strain are not fabric-forming shows 
that they are indeed physically irrelevant. Koenemann (2008b) derived a displacement field for simple 
shear with stable, non-orthogonal eigendirections which are fabric-forming.  

Experimental evidence 

Boundary conditions always exist, and must be considered for any physical process; and the condition 
of path independence applies to the energetic state only, i.e. the deformation work. An elastic 
deformation is path-independent if it is reversible. If it is possible to subject a material to any 
deformation history D1, … with free choice of strain magnitudes and boundary conditions, finally to end 
at some chosen set of external conditions Dfinal (boundary conditions and strain magnitude), the 
displacement is path-independent if the system is then always in the identical energetic state Ufinal 
independend ot the histories D1, …, that is, if Ufinal is always the same under the conditions of Dfinal. On 
the other hand, strain can be a state function only if all identical states of strain εfinal cost the same 
amount of deformation work, independent of the boundary conditions.  

Treloar (1975) performed experiments to map the energetics of elastic deformation of rubber as a 
function of the boundary conditions. He found that simple shear consistently requires 7-10% more 
work per unit strain than pure shear (Fig.1 left). Strain ε is therefore not a measure of the elastic work 
done in a deformation. It follows that strain is not a thermodynamic state function, whereas 
displacement is a state function. The boundary conditions clearly have a strong influence on the 
energetics of elastic deformation, but they have no bearing on whether an elastic deformation is path-
independent or not.  
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Fig.1 Energetics of simple shear relative to other deformation types. Columns: theoretical predictions 
(Koenemann, 2008b); elastic simple shear (SS) is expected to require 8,4% more work than pure 
shear (PS = 100%), plastic simple shear should require 26.7% less work than the respective pure 
shear. Triangles: Treloar (1975) PS and SS, rubber; black dots: Tome et al. (1984), copper, 
compression and torsion at 20°C; white dots: Franss en (1996), salt, compression and SS at 300 and 
350°C.  

The new approach: structure and predictions 

The new approach (Koenemann 2008b) proceeds in a very different way. It is assumed that an elastic 
deformation is a change of state such that work is done upon a system, and vice versa. The approach 
therefore starts with the First Law and an equation of state. The external loading conditions and the 
material properties are mutually independent, but they both influence the resulting loading state. It is 
assumed that the system has a potential proportional to its mass which is in its zero potential state 
when unloaded. Furthermore, system and surrounding are thought to be solidly bonded to one 
another. This condition ascertains that equilibrium always exists. Then two vector fields are derived; 
the internal vector field represents the material properties (strength, anisotropy), it is the force field 
exerted by the system at the surrounding; the external vector field is exerted by the surrounding upon 
the system, its properties are controlled by the boundary conditions (pure  or simple shear etc.). The 
loaded state is then represented by a third force vector field which combines  the properties of the first 
two ones. The systematics is explained below, using a plane pure shear with eigendirections parallel 
to the coordinates Xi – maximum compressive loading along X2, and minimum compressive loading 
along X1. The coordinate origin Q coincides with the center of mass of the thermodynamic system. 
The material properties are assumed to be isotropic, the system surface forms a sphere about Q. The 
system is embedded in a bonded surrounding of infinite extent.  

To calculate the deformation at a point Q with given internal and external conditions, it is assumed that 
the ideal deformation state is the one that requires a maximum of work, which is an isotropic volume 
contraction. It is thereby assumed that any deformation implies an isotropic, inward-directed force field 
which is called the operative force field fop; it represents the average loading and is always non-zero. 
(This assumption makes the new approach different from the older ones, it observes the Poisson 
condition eqn.1.) The deviatoric force field fdev is then constructed such that its average over all 
directions is zero relative to the ideal change of state. The deviatoric field is then further decomposed 
into a normal force component field – force components fdev_n colinear with the radius – and a shear 
force component field – force components fs(syst) perpendicular to the radius. (1) The field fop causes 
the system to contract isotropically. PdV-work is done upon the system. (2) The field fdev_n causes the 
system to contract along X2, and to expand along X1, such that the shape changes; the operation is 
volume-neutral, and no net work is done. (3) The field fs(syst) represents the shear component exerted 
by the system at the surrounding because the system dilates by itself in X1 due to the law of least 
work. The system therefore exerts shear forces at the surrounding. The effect of this step is an 
energetic relaxation to the energetic equilibrium state if the system surface in X1 were unbonded. (4) 
The field fs(surr) represents the shear forces exerted by the surrounding upon the system. This step has 
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the same effect as the system shear forces, the result is a further dilation along X1, but the system is 
then under external tension in X1.  

All work done has a volume effect. Work done by shear forces has only one sign, irrespective of the 
sign of the torque, because the spatial effect of a shear force is always dilatory. The sum of the four 
components is the effective force field,  

 fop + fdev_n + fs(syst) + fs(surr) = feff (4) 

If the work equation is applied, the field feff yields the elastic displacement field such that force field 
and displacement field have identical properties, i.e. they both contain all the information required to 
define the energetic and geometric state of the system (Koenemann 2008b). The strain ε can then be 
extracted if desired. – The component fs(surr) can be mechanically active only in a bonded continuum; it 
must be zero along solid-freespace interfaces. This will cause gradients in any discrete sample as a 
function of sample shape and loading configuration.  

Model calculations for pure shear and simple shear for a system in an infinite bonded continuum 
indicate that the work done in elastic simple shear is ca. 8% higher than work done in pure shear 
(Fig.1 left). Thus the prediction of the new approach is in harmony with the observed experimental 
data, confirming that strain ε is not a thermodynamic state function. Instead, displacement is a state 
function, which becomes apparent if deformation types with non-orthogonal properties are considered.  

Plastic deformation work 

State functions cannot be the issue in a consideration of irreversible plastic deformation work because 
entropy production depends on mechanisms, time-dependent processes, and other parameters. 
Nonetheless, strain is not a measure of deformation work in plastic deformation either. Tome et al. 
(1984) conducted experiments with copper in axial compression and in torsion, and found that torsion 
costs ca. 18% less work than compression (Fig.1 right). Franssen & Spiers (1990) and Franssen 
(1996) conducted experiments with rock salt for axial and simple shear. Their difference between the 
work done in simple shear and compression is in the order of 38% (Fig.1 right). Tome et al (1984) 
sought to find an explanation for their results in the theory of plasticity. Franssen & Spiers (1990) put 
more weight on deformation mechanisms and transport processes in the crystal lattice. Both studies 
had to admit that a compelling reason for the energetic difference they discovered is wanting.  

Koenemann (2008b) extended the new approach to the initiation of plastic deformation. At the yield 
point the deformation switches from reversible to irreversible; hence bonds are broken, the absolute 
magnitude of loading no longer rises, and the fields fop, fdev_n, and fs(syst) no longer require any work. All 
further work is then done by shear forces fs(surr) only. This is only half of the shear work required for 
elastic deformation which is then dissipated energy. The approach predicts that a plastic simple shear 
deformation requires 26.7% less work than a plastic pure shear deformation for the same strain.  

The theory says nothing about mechanisms of plastic flow, and reality surely is more complex than 
these simple models. Natural flow of rocks is known to be strongly rate-dependent, which has not 
been considered here. However, the predictions are in sign and magnitude comparable to the 
experimental results, even if they are not expected to be the last word in this matter.  

Discussion 

Deformation types are not energetically equivalent, neither in the elastic nor in the plastic realm, and 
naturally those that cost the least amount of work are favoured by nature. In the elastic realm this is 
the deformation type with the highest symmetry state, i.e. orthorhombic, or even axial. In the plastic 
realm it is simple shear.  

Strain was devised by Cauchy (1827a) as a purely geometric device. It is a term that can be easily 
measured, thus it is certainly not without value in practical applications; but as an energetically 
relevant term strain suffers from the same deficiencies as Cauchy's theory in general. The early 19th 
century was not the right time yet to fully comprehend the physics of deformation. The error does not 
become instantly obvious in loading configurations with orthorhombic or higher symmetry properties 
because the deformation types with higher symmetry properties are favoured by nature in the elastic 
realm due to the law of least work (Fig.1). The critical deformation type to test the validity of strain as a 
physical parameter is therefore a deformation with less than orthogonal properties, but such 
experiments were not done before Poynting (1912) and the studies in the 1950s (cf. Treloar 1975).  
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Any deformation starts with elastic deformation. Its contribution to the total deformation may be 
insignificant in geological materials, but the elastically loaded state determines the force configuration 
in the loaded state. Thermodynamics, which is the physics of continua, has been a very successful 
theory for gases and fluids. The boundary condition in standard thermodynamics – e.g. in a pressure 
increase – is implicitly isotropic, so the theory is commonly and correctly given in scalar form. The new 
approach (Koenemann 2008b) is a reformulation of standard thermodynamic theory in vector field 
form, such that anisotropic material properties and anisotropic external boundary conditions can be 
considered. The predictions for the energetics of elastic and plastic deformation are supported by 
observations.  

The conventional theory of elasticity is pre-thermodynamic in mathematical and physical structure, and 
the term it offers for the quantification of a deformation – strain – does not contain sufficient energetic 
information to be fully descriptive. The conventional theory usually assumes implicitly or explicitly that 
the volume of a system to be deformed remains constant (incompressibility). This is systematically 
questionable, it imposes an unnecessary boundary condition, and it ignores the Poynting effect, also 
called dilatancy, which causes a body subjected to elastic simple shear to dilate elastic-reversibly 
(Poynting 1912, Reiner 1958). Instead, the new approach (Koenemann 2008b) is sensitive to 
boundary conditions, it provides a clear cause-effect relation, it derives its mathematical structure from 
thermodynamics, it treats displacement as a state function, it correctly predicts the elevated work 
required in elastic simple shear relative to pure shear, and it predicts the Poynting effect.  

The discussion on the generation of discrete shear zones in geology has centered on mechanisms. 
Poirier (1980) distinguished five: geometric softening through fabric alignment, structural softening 
through recrystallization and grain boundary migration, strain hardening through dislocation 
entanglement, strain rate softening, and thermal softening. The cause of shear localization has 
therefore been sought in the material and its changing properties as a function of deformation. Implied 
in all this is the assumption, so far unquestioned, that strain ε is a physically meaningful term which is 
directly associated with a given amount of work. However, this is not the case. Rather, the specific 
deformation type itself may be the cause of softening, independent of any material properties in 
particular, if the energetics of deformation are not the same for the various boundary conditions. On 
the contrary, if simple shear is so strongly energetically favoured in the plastic realm, the law of least 
work suggests that a homogeneous body should decay into narrow shear bands, with large regions in 
between which behave passively, and heterogeneous flow should be the overwhelming rule. This is 
not to say that other mechanisms originating in the material do not exist, they surely do; but a search 
for the mechanism of shear concentration misses the point if simple shear itself is the reason.  

Elastic effects are commonly ignored in studies of plastic deformation. However, the positive energetic 
deviation of simple shear in relation to pure shear in the elastic realm may be directly linked to the 
negative deviation in the plastic realm. Since all shear causes dilation, the material can be said to be 
constitutionally expanded; sub-volumes subjected to simple shear boundary conditions within a 
bonded continuum may thus reach the yield point earlier, and plastic deformation may thus be initiated 
more easily. After all, both the experiments by Poynting (1912) and Tome et al. (1984) were done in 
torsion.  
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Supplementary Figure 

 

 

Supplementary Figure. Experimental data (redrawn) for simple shear and pure shear or axial 
compression. Abscissa: strain, ordinate: pressure in MPa. Top: elastic deformation of rubber (Treloar 
1975). Center: deformation of salt in compression and simple shear at the temperatures indicated 
(Franssen and Spiers 1990, Franssen 1996). Bottom: deformation of copper in torsion and 
compression at room temperature (Tome et al. 1984). The data points in Fig.1 above are readings 
from these data here.  

 

 


