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Abstract 
In an exhaustive presentation of the linear theory of elasticity by Gurtin (1972) the 
author included a chapter on the relation of the theory of elasticity to the theory of 
potentials. Potential theory distinguishes two fundamental physical categories: 
divergence-free and divergence-involving problems. From the criteria given in the 
source quoted by the author it is evident that elastic deformation of solids falls into the 
latter category. It is documented in this short note that the author presented volume-
constant elastic deformation as a divergence-free physical process, systematically 
ignoring all the information that was available to him that this is not so.  



3 

Introduction 

There is little mention of potential theory in the literature on the mechanics of solids. 
This author has shown before that in fact there are profound incompatibilities between 
the theory of stress and deformation on the one hand, and the potential theory on the 
other (Koenemann 2001a, b). Recently it has come to my attention that I cannot have 
been the first one to notice this incompatibility.  

In 1972 Gurtin published a 300 page presentation of the linear theory of elasticity. One 
of the chapters in his article is entitled Elements of Potential Theory (p.12-24). Several 
times Gurtin refers to the classical text on potential theory by Kellogg (1929), e.g. in a 
footnote on p.13 he explicitly mentions chapter IV which is entitled The Divergence 
Theorem. He also quotes Kellogg on p.19 when he explains Newtonian and logarithmic 
potentials. It appears therefore that that he must have studied Kellogg's book carefully. 
The unsuspecting reader must come to the belief that there is complete compatibility 
between Kellogg's source and Gurtin's presentation of it. However, to anyone who is 
familiar with both texts there is a profound disparity between the two which I document 
here.  

 

Contrasts 

Kellogg mentions many details that cannot possibly have escaped Gurtin's attention, 
such as:  

• Kellogg gives the physical interpretation of divergence as a measure of "the 
work done on/by a field" on a system of mass, e.g. p.52. 

• Kellogg writes on p.41, "Newtonian fields are solenoidal [i.e. divergence-free] 
in free space, ceasing to be so only at points where masses are situated". 

• Kellogg repeatedly remarks that the surface A in the divergence theorem must 
not run through mass for the divergence theorem to be universally valid, i.e. for 
the expression for divergence to be physically meaningful.  

• Kellogg explains volume distributions in chapter I, §8 and §9. 

• Kellogg explains the Poisson equation ∇2U = -4πκ in the case that there is mass 
in the system initially on p.43, in great detail on p.156, and already prepares for 
this in the exercises for chapter III, §3 on p.57, #9 and p.58, #11.  

• Kellogg explains the conditions under which bodies may be reduced to point 
sources, and when this is not possible, i.e. when one deals with a distributed 
source (e.g. p.45), the latter in their proper context of the Poisson equation.  

• Kellogg mentions the zero potential distance which may be infinite or finite; in 
the latter case it is by convention set to be unity, but it cannot be zero (p.53 & 
63).  

None of these points are mentioned by Gurtin. Besides, I must assume that he has 
knowledge of the fact that quite commonly the condition div x = 0 (x = some variable) is 
used both as a condition of orthogonality and a condition of equilibrium. This is always 
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true, of course, for problems involving conservative physics, but it cannot be true for 
problems for which div x ≠ 0, i.e. for Poisson problems.  Physically, the divergence-
absent condition is the definition of a conservative process, implying that there is no 
exchange of energy between a system and its surrounding, neither in form of heat nor in 
form of work; in contrast, the condition of nonzero divergence implies that the process 
under study is nonconservative. Such processes may be reversible or irreversible. That 
is, the conditions div x = 0 and div x ≠ 0 refer to entirely different energy conservation 
laws.  

As a specialist in continuum mechanics, Gurtin surely knows that Euler used the 
Laplace condition div v = 0 (v = velocity vector) in his continuity equation as a mass 
conservation law. Any mass conservation law in conservative physics is also an energy 
conservation law in the sense of Bernoulli, Ekin + Epot = const, because of the 
equivalence of mass and energy in Newtonian physics. But this equivalence does not 
hold, of course, in thermodynamics where mass and energy are independent variables: 
there one usually keeps mass constant in order to understand changes of the energetic 
state, and the respective energy conservation law is the First Law, dU = dw + dq. By 
nature, an elastic deformation requires work to be done by a surrounding upon a system 
such that an elastic potential builds up.  

Despite Kellogg's painstaking effort to distinguish divergence-free cases from non-
solenoidal cases, Gurtin never mentions the condition div f = ϕ (f = some vector field). 
Instead, on p.24 he writes: "The following well-known proposition on divergence-free 
and curl-free vector fields will be extremely useful: let v be a smooth vector field that 
satisfies div v = 0, curl v = 0; then v is harmonic." This sentence appears as a general 
statement that does not need further justification, inducing in the reader the readiness to 
rely on the author's authority. In the light of Kellogg's careful systematics and indeed 
against the intent of the better part of his book, however, Gurtin's seemingly innocuous 
remark is grossly misleading. Kellogg explains the Laplace condition ∇2U = 0 (U = 
some potential) in great detail in chapter V entitled Properties of Newtonian Potentials 
at Points of Free Space. Then Kellogg devotes chapter VI to the Properties of 
Newtonian Potentials at Points Occupied by Masses, discussing the Poisson condition 
∇2U = ϕ. Even if a reader has no prior knowledge of potential theory one would assume 
– as it happened to me – that such a chapter must exert irresistible attraction to anyone's 
attention with a particular interest in the mechanics and physics of solids. Gurtin 
manages to ignore it completely. Such consistent and apparently systematic omissions 
of substantial and important parts of Kellogg's text make it likely that this was done 
with intent. Gurtin writes  

on p.45: Sn = -S-n (S = stress vector), 

on p.49: div S + b = 0 (S = stress vector field, b = body force vector) 

on p.53: In the absence of body forces the equations of equilibrium take the form 
div S = 0. 

Gurtin must have realized – in the light of Kellogg's physical interpretation of 
divergence as a measure of the work done upon/by a system – that the condition 
div S = 0 is a mathematically exact form of the assertion that during a volume-constant 
elastic deformation no work is done upon the system, implying either that deformation 
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of a solid is a conservative physical process like celestial mechanics, or else that the 
deformation can be achieved without doing work.  

I cannot believe that Gurtin has missed the significance of the zero potential distance, 
and he must have noticed that no such distance is to be found in continuum mechanics – 
thanks to Cauchy's flawed derivation of the stress tensor (Koenemann 2001a). 
Continuum mechanics is incompatible with thermodynamics because this distance, 
missing in continuum mechanics, is in thermodynamics the radius of the 
thermodynamic system.  

Gurtin cannot have missed Lemma 1 in Kellogg, p.147 which states that "the integral  

∫∫∫ dVQf )(  

is convergent if and only if it approaches 0 with the maximum chord of V". (The lemma 
already appears on p.21 in an exercise to chapter I, §9.) Under the condition stated in 
the headline the integral has a nonzero value. To anyone with standard skills in this 
field it must be clear that this most fundamental existence theorem is squarely at 
variance with the assumptions made for the derivation of the Cauchy stress tensor 
(Koenemann 2001a). ∫ f(Q) dV = κ is known as the charge (see, for example, Feynman's 
lectures).  Of necessity, the charge is zero only in the unloaded state, which is not of 
much interest in elasticity.  

Gurtin must have realized that deformation of solids involves homogeneously 
distributed mass, that a solid represents a distributed source, and such problems are 
always Poisson problems; that is: the Laplace condition does not apply, but any 
differential approach to continuum mechanics must be based on the Poisson condition 
div f = ϕ. It follows from Kellogg that distributed masses cannot be dissolved into a 
continuum of point sources – this is precisely the intent of Cauchy's flawed continuity 
approach that is used to derive this tensor – but that energy and work must be 
considered per unit volume or unit mass, i.e. in the sense of a thermodynamic system. 
And when Gurtin explains the properties of logarithmic potentials directly referring to 
Kellogg, it is inconceivable that he did not recall the logarithmic nature of 
thermodynamic potentials, or did not notice the nature of the examples given by 
Kellogg to illustrate where such potentials are encountered.  

Gurtin must have noticed that the one and only expression in Kellogg referring to work 
is the divergence. The expression he gives for elastic work, i.e. the elastic potential 
(Gurtin 1972:85),  

22

3
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is squarely at odds with potential theory: the only term that is compatible with the latter 
is tr E, but it is by definition zero for a volume-constant deformation. The entire 
derivation of this expression (which Gurtin does not show) presupposes the existence of 
the Cauchy stress tensor – which is unsuited to derive a work term; in its derivation the 
condition tr E = 0 is of critical importance (it is used as an equilibrium condition, but 
the wrong one), and the zero potential distance was allowed to vanish identically 
(Koenemann 2001a, b); but without this zero potential distance it is impossible to define 
work. The term tr E is fortuitous – spurious by derivation, correct by coincidence, and 
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by itself insufficient for consideration of a general deformation because, as can be 
learned from Kellogg, but has been ignored by Gurtin, any surface of a thermodynamic 
system within a solid must necessarily run through mass, thereby limiting the generality 
of the Gauss divergence theorem. The term tr E therefore can not be taken as a measure 
of the complete work done on/by the system, i.e. by itself it is physically meaningless.  

Gurtin must have seen the method how to derive a vector field from a potential: if U is 
some scalar field, ∂U/∂xi = vi is a vector field, and ∂2U/∂xi∂xj = F is the field property 
tensor; but he never refers to it. He must be aware that f = ma is not a field force, but a 
single force vector, it cannot form a field, and it cannot be derived; Sokolnikoff (1964) 
calls f = ma an underived force. Instead, all force vector fields must be derived from a 
potential, f = ei∂U/∂xi, but this has never been done in continuum mechanics. In fact, 
upon careful reading it becomes apparent that all of vector fields in Gurtin (1972) are 
asserted, never defined. In his textbook (Gurtin 1981) he is more circumspect, he only 
writes about systems of forces, studiously avoiding the treacherous term field. 
Technically, this is only correct, because due to all its shortcomings, first of all the 
absence of the zero potential distance, current continuum mechanics is not a field theory 
in the way this term is commonly understood.  

 

Conclusion 

I cannot believe that Gurtin failed to recognize the relevance of the divergence theorem 
to the stress theory and continuum mechanics. He must have noticed the profound 
incompatibility of the theory of elasticity with the theory of potentials around 1970 
when he wrote the article for the Handbuch der Physik. Given the wealth of information 
that can be found in Kellogg on distributed mass problems, conscious effort must have 
been invested in order not to refer to it.  
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